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Abstract

Event-by-event distributions in multiplicity, ET and 〈pT 〉 are illustrated and techniques to
understand them are discussed.

1 Multiplicity in collisions of nucleons and nuclei

Many modern multiplicity measurements do not simply count the all particles produced on each in-
teraction, but, rather, measure single particle and multi-particle “inclusive” cross-sections. A single
particle inclusive reaction involves the measurement of just one particle coming out of a reaction,

a + b → c + anything .

The terminology comes from the fact that all final states with the particle c are summed over, or
included. A “semi-inclusive” reaction refers to the measurement of all events of a given topology or
class, e.g.

a + b → n1 particles of class 1 + anything ,

where “centrality” is the most common class in relativistic heavy ion collisions.
Measurements are presented in terms of the (Lorentz) Invariant single particle inclusive differential

cross section (or Yield per event in the class if semi-inclusive):

Ed3σ

dp3
=

d3σ

pT dpT dydφ
=

1

2π
f(pT , y) , (1)

where y is the rapidity, pT is the transverse momentum, and φ is the azimuth of the particle. It
is important to be aware that the integral of the single particle inclusive cross section over all the
variables is not equal to σI the interaction cross section, but rather is equal to the mean multiplicity
times the interaction cross section : < n > × σI . Hence the mean multiplicity per interaction is

〈n〉 =
1

σI

∫

dφ

2π
dy dpT pT f(pT , y) =

1

σI

∫

dy
dσ

dy
=

∫

dy
dn

dy
=

∫

dy ρ(y) , (2)

where the terminology for the multiplicity density in rapidity is ρ(y) = dn/dy for identified particles (m
known), dn/dη for non-identified particles (m unknown, assumed massless), where η = − ln tan(θ/2) is
the pseudo-rapidity.
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Measurements of dn/dη in pp, p̄p collisions from c.m. energy
√

s = 53 to 900 GeV [1] are shown in
Fig. 1 in the left most panel. This multiplicity is normalized to σNSD, the non-single diffractive cross
section; clearly the multiplicity per inelastic collision would be smaller. Although not explicitly stated

Figure 1: Charged multiplicity measurements from UA5[1, 2].

so far, dn/dη is an average over all events. UA5 found (center and right panels) that the event-by-
event distribution of multiplicity in small regions of ∆η was much more interesting than the average
multiplicity [2]. The center panel is the relative frequency distribution of the multiplicity n in an interval
of pseudo-rapidity |η| < ηc for each event in a large sample. The study of distributions in small intervals
near mid rapidity should allow observation of the “real” multiplicity fluctuations, freed of the constraints
of energy, momentum and charge conservation, which need not be locally conserved. UA5 found that
the multiplicity distributions were Negative Binomial, not Poisson, which implies correlations [2]. In
the right panel, where the multiplicity distribution in interval ηc is scaled by the mean in that interval,
the distributions clearly show larger fluctuations, the smaller the interval—they do not “scale in the
mean”.

2 ET (or Transverse Energy) Distributions

ET is an event-by-event variable defined as:

ET =
∑

i

Ei sin θi and dET (η)/dη = sin θ(η) dE(η)/dη , (3)

The sum is taken over all particles emitted on an event into a fixed but large solid angle, (which is
different in every experiment). ET distributions are measured in both Hadronic and Electromagnetic
Calorimeters and even as a sum of charged particles

∑

i |pTi
| ≡ ETc. ET was introduced by High Energy

Physicists [3] as an “improved” method to detect and study the jets from “hard-scattering” compared
to high pT single particle spectra by which hard scattering was discovered in pp collisions (and used
as a hard-probe in Au+Au collisions at RHIC [4]). However, this idea didn’t work as expected: ET

distributions are dominated by soft particles near the 〈pT 〉.
The first measured ET distribution in the present day usage of the terminology is by the NA5

experiment [5] in pp collisions (Fig. 2-left). The detector was essentially the same hadron calorimeter
(ring calorimeter) as used in the NA35 heavy ion experiment[6], covering the full azimuth and c.m.
pseudo-rapidity interval −0.88 < η∗ < 0.67 at pp c.m. energy

√
s = 23.7 GeV. When these data
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Figure 2: (left) ET distribution from NA5 [5];(right) ET and charged multiplicity distribu-
tions from UA1 [7].

were first presented in 1980, they shocked the world of high energy physics because they provided no
evidence for jets. The situation was not resolved until the International High Energy Physics conference
of 1982 when two important results were presented from the CERN p̄p Collider at

√
s = 540 GeV. The

UA1 collaboration [7] measured both the ET distribution in their central calorimeter and the charged
multiplicity distribution in their central tracker and found that they were the same shape when scaled by
the mean of each quantity (Fig. 2-right). This important result established that ET is like multiplicity:
composed of many soft particles near the 〈pT 〉. However, this result was overshadowed by the first
detection of a jet by UA2 [8], 5 orders of magnitude down in their ET distribution. These two results
firmly established that the jet contribution to ET distributions is negligible and that ET is essentially
an analog method of measuring the multiplicity of particles produced on an event: the ET distribution
is the random product of the multiplicity and transverse momentum distributions of the particles—
dET /dy ∼< pT > ×dn/dy.

3 ET distributions in RHI Collisions

The importance of ET distributions in relativistic heavy ion (RHI) collisions is that they are largely
dominated by the nuclear geometry of the reaction and so provide a measure of the overall character
or centrality of individual RHI interactions. According to Bjorken[9], the transverse energy flow in
rapidity, dET /dy, is thought to be related to the co-moving energy density in a longitudinal expansion,
and proportional to the energy density in space ε:

εBj =
1

τ0 πR2

d < E >

dy
=

1

τ0 πR2

dET

dy
(4)

where τ0, the formation time, is usually taken as 1 fm, πR2 is the effective area of the collision, and
d < E > /dy is the co-moving (i.e. transverse) energy density.

The first measurement of an ET distribution in Relativistic Heavy Ion collisions was by the NA35
Collaboration [6] at the CERN fixed target program in 16O+Pb collisions at mid-rapidity for

√
sNN =

19.4 GeV using the same hadron calorimeter as NA5 [5]. Fig. 3 shows the ET distributions in p+Au (left)
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Figure 3: ET distributions: (left,center) NA35 [6]; (right) E802 [10].

and 16O+Pb (center) from which NA35 concluded that the upper edge of the O+Pb ET distribution
is given by the 16-fold convolution of the p+Au distribution. This is called the Wounded Projectile
Nucleon Model (WPNM). This result was followed very quickly by a result from E802 [10] (Fig 3-
right), which showed that the WPNM worked in detail: the full O+Cu and O+Au ET distributions
could be described by the 1–16 fold convolution of the measured p+Au ET distribution, weighted by
the probability of the 1–16 projectile nucleons to interact at least once in the target. Note that the
maximum energy in O+Cu is the same as in O+Au and that the upper edge of both spectra are
virtually identical above 50 GeV if the Cu cross section is multiplied by a factor of ∼ 6. This was the
first indication of large stopping at the AGS: the 16O projectiles are sufficiently stopped in Cu so that
energy emission at mid-rapidity effectively ceases.

3.1 The shapes of ET distribution

Figs. 2-left, 3-left, and 3-center, show the evolution of the shape of the ET distributions in the same
detector from pp to p+A to A+A collisions. In both pp and p+Au collisions the shape of the ET

distribution for NA35 is given by a simple Gamma distribution illustrated by the solid lines on the
figures (p = 2.4 in pp, 3.4 in p+Au). However the 16O+Au spectrum (Fig. 3-right) shows the now
“classical” A − A spectral shape: an initial fall-off and then a broad plateau, a peak at the end of
the plateau where the curve turns over (the ‘knee’) and then a sharp exponential drop-off until the
sensitivity runs out. The light lines on Fig. 3-right are 1–16-fold convolutions of the measured p+Au
spectral shape in the E802 detector (a Gamma distribution with p = 2.6 ± 0.2).

3.1.1 Statistical independence and convolutions

In mathematical statistics, convolutions arise from the sums of mutually independent random variables.
The probability distribution of a random variable Sn, which is itself the sum of n independent random
variables with a common distribution f(x):

Sn = x1 + x2 + · · · + xn (5)

is given by fn(x), the n-fold convolution of the distribution f(x):

fn(x) =
∫ x

0
dy f(y) fn−1(x − y) . (6)
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The mean, µn = 〈Sn〉, and standard deviation, σn, of the n-fold convolution obey the familiar rule

µn = nµ σn = σ
√

n , (7)

where µ and σ are the mean and standard deviation of the distribution f(x).

3.1.2 The Gamma distribution

Just as the Negative Binomial Disrtibution (NBD) fits the charged particle multiplicity distribution
in pp collisions, the Gamma distribution fits the ET distributions. Moreover, the Gamma distribution
is an example of a probability density function (pdf) which has particularly simple properties under
convolutions and scale transformations (so does the NBD, but no space for discussion here). The
Gamma distribution is a function of a continuous variable x and has paramters p and b

f(x) = fΓ(x, p, b) =
b

Γ(p)
(bx)p−1e−bx (8)

where
p > 0, b > 0, 0 ≤ x ≤ ∞

Γ(p) = (p − 1)! if p is an integer, and f(x) is normalized,
∫

∞

0 f(x)dx = 1. The mean and standard
deviation of the distribution are

µ ≡ 〈x〉 =
p

b
σ ≡

√

〈x2〉 − 〈x〉2 =

√
p

b

σ2

µ2
=

1

p
. (9)

The n-fold convolution of the Gamma distribution (Eq. 8) is simply given by the function

fn(x) =
b

Γ(np)
(bx)np−1e−bx = fΓ(x, np, b) (10)

i.e. p → np and b remains unchanged. Note that the mean and standard deviation of Eq. 10

µn =
np

b
σn =

√
np

b

σn

µn

=
1√
np

(11)

when compared to Eq. 9 explicitly obey Eq. 7. To summarize, the n-th convolution of the Gamma
distribution fΓ(x, p, b) is fΓ(x, np, b)—b remains unchanged.

3.2 Extreme-Independent Models

The WPNM is an example of an extreme-independent model, where particle production takes place
entirely outside the volume of the colliding nuclei, so that there is no cascading. Thus, extreme-
independent models separate the overlap geometry of the nuclear collision from the dynamics of particle
production. The Nuclear Geometry is represented as the relative probability, wn, on a B+A interaction
for a given number of projectile participants (WPNM), total participants (Wounded Nucleon Model—
WNM) [11], wounded projectile quarks (Additive Quark Model) [12] or other fundamental element
of particle production. The dynamics of particle production, the distribution of particles or ET for
the fundamental element, is taken from the data. For instance, the measured ET distribution for a pp
collision represents 2 participants, 1 NN binary-collision, 1 wounded projectile nucleon, or a predictable
convolution of quark-nucleon collisions.

The WPNM calculation for a B+A reaction is given by the sum:

(

dσ

dET

)

WPNM
= σBA

B
∑

n=1

wn Pn(ET ) (12)
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where σBA is the measured B+A cross section in the detector aperture, wn is the relative probability for
n projectile nucleons in the B+A reaction and Pn(ET ) is the calculated ET distribution on the detector
aperture for n independently interacting projectile nucleons. If f1(ET ) is the measured ET spectrum
on the detector aperture for one projectile nucleon, and p0 is the probability for the elementary collision
to produce no signal on the detector aperture, then, the correctly normalized ET distribution for one
projectile nucleon collision is:

P1(ET ) = (1 − p0)f1(ET ) + p0δ(ET ) , (13)

where δ(ET ) is the Dirac delta function and
∫

f1(ET ) dET = 1. Pn(ET ) (including the p0 effect) is

obtained by convoluting P1(ET ) with itself n − 1 times

Pn(ET ) =
n

∑

i=0

n!

(n − i)! i!
pn−i

0 (1 − p0)
ifi(ET ) (14)

where f0(ET ) ≡ δ(ET ) and fi(ET ) is the i-th convolution of f1(ET ).

3.2.1 The number of projectile participants can be measured

The number of projectile participants is not a purely abstract quantity, it can be measured, typically by
a Zero Degree Calorimeter which, in fixed target collisions, detects the projectile spectators remaining at
beam rapidity after the collision. The projectile participants for a given event are just the total number
of nucleons in the projectile minus the measured spectators. Fig. 4-left shows a measurement by the
WA80 collaboration [13] at CERN of EZDC the energy of spectators versus the average mid-rapidity

Figure 4: Measurements from WA80 [13]:(left) ET vs EZDC; (right) test of WNM.

ET observed for 200 A·GeV 16O+Au collisions. As the impact parameter reduces from grazing impact,
more nucleons participate (there are fewer spectators) so more energy is transferred from the projectile
and target rapidity regions to the transverse direction and toward mid-rapidity, resulting in increased
ET . WA80 also checked the WNM in detail by measuring the mid-rapidity dET/dη as a function of
W = 〈Npart〉, the average number of participants, at two incident energies and for 16O and 32S on
Au—The linear relationship shows that the WNM works at CERN fixed target energies [14].
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3.3 Systematics of ET distribution at various
√

sNN

Actually, the only place where the WNM works is at CERN/FNAL Fixed Target energies,
√

sNN ∼ 20
GeV. The WNM underpredicts for higher c.m. energies,

√
sNN ≥ 31 GeV, and overpredicts at AGS

energies,
√

sNN ∼ 5 GeV, where the WPNM works at mid-rapidity.
ET distributions for pp dd and α−α collisions at

√
sNN = 31 GeV at the CERN ISR [15] are shown

in Fig. 5-left. Fig. 5-center shows: a Gamma distribution fit with p = 2.50 ± 0.06 for the pp data; a

Figure 5: R110-BCMOR ET distributions at
√

sNN = 31 GeV [15, 16].

WNM calculation for the α − α data (dot-dash line) using the pp fit, which does describe the data for
the first order of magnitude, but totally misses the upper tail; and an AQM calculation [16], which fits
the α − α data. Interestingly, a single Gamma distribution with the same p = 2.48 ± 0.05 as the pp
data fits the α − α data, which implies that the pp and α − α data have virtually identical shapes over
10 decades when scaled by their respective means Fig. 5-right. We still don’t know whether this is a
fluke or important Physics.

The situation at AGS energies,
√

sNN ∼ 5 GeV is still different (see Fig. 6) [17]. The 8 panels on
the left show the mid-rapidity ET distributions for p+Au and p+Be as a function of δη interval. The
p+Au and p+Be have identical Gamma distribution shapes to each other (parameters given on plot)
which change in lockstep over a wide range in δη—the WNM utterly fails!1 In the 4 panels on the right
are the p+Au, O+Cu, Si+Au and Au+Au ET distributions as a function of δη, where the lines are
WPNM calculations based on the p+Au fit in each interval—reasonable, but not perfect agreement.

The E802 data in Fig. 6 have no correction for the EMcalorimeter response or for the solid angle.
The measurement in any solid angle is very precise but is not accurate, clearly good for A dependences
in a single setup, but not as good (larger systematic errors) for comparison of different experiments.
Two improved ways of presenting the Au+Au data are illustrated in Fig. 7: (left) ET in the measured
aperture is corrected to ET in ∆Φ = 2π ∆η = 1 for all 4 δη intervals without (or ideally, with)
HAD/EM calorimeter response correction; (right) ET scale is corrected to ET /〈ET 〉pp, i.e. ET in units
of 〈ET 〉 per participant pair, using the measured 〈ET 〉pp for pp collisions in same aperture. The larger
fluctuations for smaller apertures are now clearly visible. In actual fact, the plot in Fig. 7-right, was
scaled by the measured 〈ET 〉p+Au, but it gives the correct measurement “per participant pair”, since the
WPNM applies rather than the WNM. This can be seen in Fig. 8-left, where the distribution from the
largest interval, 1.22 ≤ η ≤ 2.50, from Fig. 7-right is compared directly to the probability distribution
for Npart/2. The ET distribution follows the nuclear geometry very accurately until roughly the top 4-
percentile of the distribution, where the underlying fluctuations begin to show once the nuclear geometry

1This confirms the original AGS stopping measurement [18] and the explanation that the pion distribution for the
second collision shifts by > 0.8 units in η, i.e. well away from mid-rapidity.
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Figure 6: ET distributions vs δη from AGS-E802 [17].

Figure 7: The Au+Au ET distributions from Fig. 6, scale corrected in two different ways.

is exhausted. This is illustrated by the WPNM calculation in Fig. 8-right, where the individual n-fold
convolutions of the fundamental distribution are shown.

3.4 Results from RHIC

The ET (∆Φ = 2π ∆η = 1) distributions from PHENIX at RHIC [20] for Au+Au collisions at
√

sNN =
200 GeV for 5 δφ intervals of 1, 2, . . . 5 × 22.4◦ are shown in Fig. 9-left, compared to the E802 ET

distribution from Fig. 7-left. At RHIC, about 2-3 times more ET and multiplicity than predicted by
the WNM are observed [20, 21]. It is interesting to compare the shapes of the Au+Au ET distributions
at AGS and RHIC by simply scaling the AGS-E802 distribution by an empirical factor of 8.1 (Fig. 9-
right)—the distributions are exactly the same shape, even though the underlying production dynamics
are totally different. This is yet to be understood.

Fig. 9 also indicates larger fluctuations of ET with decreasing solid angle. In order to answer the
question of whether these fluctuations are random or due to correlations, we look at the event-by-event

8



Figure 8: E802 distribution in ET /〈ET 〉p+Au compared to wn (left), WPNM calculation(right)

Figure 9: PHENIX ET distributions [20] for Au+Au at RHIC compared to E802 at AGS:
(left) E802 absolute scale from Fig. 7-left; (right) E802 data scaled by 8.1 to compare shape.

distribution of the average pT of charged particles [22]:

MpT
= pT (n) =

1

n

n
∑

i=1

pTi
=

1

n
ETc . (15)

The event-by-event average Eq. 15 is closely related to the event-by-event sum Eq. 3, and also follows
Gamma distributions [19]. Fig. 10-left, shows the event-by-event distribution of MpT

as data points,
with mixed events (histogram) representing a random sample. Barely visible to the naked eye, the
standard distribution of the data is slightly larger than the random sample as represented by FpT

≡
σMpT

/σrandom − 1 (Fig. 10-center, Fig. 10-right). FpT
first increases with the centrality (Npart) and then

decreases. FpT
from pp collisions (Npart = 2) is also shown. FpT

also increases with the maximum pT

of tracks used in the average (Fig. 10-right). These small correlations of a few percent are explained as
due to jets [22], which is quite different than the observations at lower

√
sNN [23].

The absence or small size of soft-fluctuations at RHIC remains a mystery.
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